3.30.19 \(\int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx\) [2919]

3.30.19.1 Optimal result
3.30.19.2 Mathematica [C] (verified)
3.30.19.3 Rubi [A] (verified)
3.30.19.4 Maple [A] (verified)
3.30.19.5 Fricas [C] (verification not implemented)
3.30.19.6 Sympy [F]
3.30.19.7 Maxima [F]
3.30.19.8 Giac [F]
3.30.19.9 Mupad [F(-1)]

3.30.19.1 Optimal result

Integrand size = 28, antiderivative size = 129 \[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\frac {69}{55} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {7 (2+3 x)^{3/2} \sqrt {3+5 x}}{11 \sqrt {1-2 x}}+\frac {1597}{50} \sqrt {\frac {3}{11}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {24}{25} \sqrt {\frac {3}{11}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
1597/550*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+24 
/275*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+7/11*( 
2+3*x)^(3/2)*(3+5*x)^(1/2)/(1-2*x)^(1/2)+69/55*(1-2*x)^(1/2)*(2+3*x)^(1/2) 
*(3+5*x)^(1/2)
 
3.30.19.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.51 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.78 \[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\frac {10 (139-33 x) \sqrt {2+3 x} \sqrt {3+5 x}-1597 i \sqrt {33-66 x} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )+1645 i \sqrt {33-66 x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{550 \sqrt {1-2 x}} \]

input
Integrate[(2 + 3*x)^(5/2)/((1 - 2*x)^(3/2)*Sqrt[3 + 5*x]),x]
 
output
(10*(139 - 33*x)*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] - (1597*I)*Sqrt[33 - 66*x]*El 
lipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] + (1645*I)*Sqrt[33 - 66*x]*Ellip 
ticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/(550*Sqrt[1 - 2*x])
 
3.30.19.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {109, 27, 171, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x+2)^{5/2}}{(1-2 x)^{3/2} \sqrt {5 x+3}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {1}{11} \int \frac {3 \sqrt {3 x+2} (138 x+85)}{2 \sqrt {1-2 x} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \int \frac {\sqrt {3 x+2} (138 x+85)}{\sqrt {1-2 x} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \left (-\frac {1}{15} \int -\frac {3 (1597 x+1011)}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {46}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \left (\frac {1}{5} \int \frac {1597 x+1011}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {46}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \left (\frac {1}{5} \left (\frac {264}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1597}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {46}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \left (\frac {1}{5} \left (\frac {264}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1597}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {46}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {7 (3 x+2)^{3/2} \sqrt {5 x+3}}{11 \sqrt {1-2 x}}-\frac {3}{22} \left (\frac {1}{5} \left (-\frac {16}{5} \sqrt {33} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {1597}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {46}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

input
Int[(2 + 3*x)^(5/2)/((1 - 2*x)^(3/2)*Sqrt[3 + 5*x]),x]
 
output
(7*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/(11*Sqrt[1 - 2*x]) - (3*((-46*Sqrt[1 - 2 
*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/5 + ((-1597*Sqrt[11/3]*EllipticE[ArcSin[S 
qrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (16*Sqrt[33]*EllipticF[ArcSin[Sqrt[3/ 
7]*Sqrt[1 - 2*x]], 35/33])/5)/5))/22
 

3.30.19.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.30.19.4 Maple [A] (verified)

Time = 1.36 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.09

method result size
default \(\frac {\sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (1551 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-1597 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+4950 x^{3}-14580 x^{2}-24430 x -8340\right )}{16500 x^{3}+12650 x^{2}-3850 x -3300}\) \(140\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (\frac {3 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{10}-\frac {1011 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{1925 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {1597 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{1925 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {49 \left (-30 x^{2}-38 x -12\right )}{44 \sqrt {\left (x -\frac {1}{2}\right ) \left (-30 x^{2}-38 x -12\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(214\)

input
int((2+3*x)^(5/2)/(1-2*x)^(3/2)/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/550*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(1551*5^(1/2)*(2+3*x)^(1/2 
)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^( 
1/2))-1597*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Elli 
pticE((10+15*x)^(1/2),1/35*70^(1/2))+4950*x^3-14580*x^2-24430*x-8340)/(30* 
x^3+23*x^2-7*x-6)
 
3.30.19.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.57 \[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\frac {900 \, {\left (33 \, x - 139\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 54259 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 143730 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{49500 \, {\left (2 \, x - 1\right )}} \]

input
integrate((2+3*x)^(5/2)/(1-2*x)^(3/2)/(3+5*x)^(1/2),x, algorithm="fricas")
 
output
1/49500*(900*(33*x - 139)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) + 542 
59*sqrt(-30)*(2*x - 1)*weierstrassPInverse(1159/675, 38998/91125, x + 23/9 
0) - 143730*sqrt(-30)*(2*x - 1)*weierstrassZeta(1159/675, 38998/91125, wei 
erstrassPInverse(1159/675, 38998/91125, x + 23/90)))/(2*x - 1)
 
3.30.19.6 Sympy [F]

\[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\int \frac {\left (3 x + 2\right )^{\frac {5}{2}}}{\left (1 - 2 x\right )^{\frac {3}{2}} \sqrt {5 x + 3}}\, dx \]

input
integrate((2+3*x)**(5/2)/(1-2*x)**(3/2)/(3+5*x)**(1/2),x)
 
output
Integral((3*x + 2)**(5/2)/((1 - 2*x)**(3/2)*sqrt(5*x + 3)), x)
 
3.30.19.7 Maxima [F]

\[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {5}{2}}}{\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((2+3*x)^(5/2)/(1-2*x)^(3/2)/(3+5*x)^(1/2),x, algorithm="maxima")
 
output
integrate((3*x + 2)^(5/2)/(sqrt(5*x + 3)*(-2*x + 1)^(3/2)), x)
 
3.30.19.8 Giac [F]

\[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {5}{2}}}{\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((2+3*x)^(5/2)/(1-2*x)^(3/2)/(3+5*x)^(1/2),x, algorithm="giac")
 
output
integrate((3*x + 2)^(5/2)/(sqrt(5*x + 3)*(-2*x + 1)^(3/2)), x)
 
3.30.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{5/2}}{(1-2 x)^{3/2} \sqrt {3+5 x}} \, dx=\int \frac {{\left (3\,x+2\right )}^{5/2}}{{\left (1-2\,x\right )}^{3/2}\,\sqrt {5\,x+3}} \,d x \]

input
int((3*x + 2)^(5/2)/((1 - 2*x)^(3/2)*(5*x + 3)^(1/2)),x)
 
output
int((3*x + 2)^(5/2)/((1 - 2*x)^(3/2)*(5*x + 3)^(1/2)), x)